Nitrate Surface Water Monitoring
How do you monitor surface water nitrates to help protect our environment?How does nitrates effect our freshwater waterways?
There is major concern about the health of our freshwater rivers and aquifers and the role of intensive agriculture in climate change. Nitrogen can enter waterways as bought-in feed or as nitrogenous fertiliser. Plants take up the nitrogen, but there is more nitrogen in the grass than animals can use, so the excess is returned to the soil as urine, primarily in the ammonium form. Bacteria convert the ammonium nitrogen to nitrate-nitrogen which is highly soluble, this can easily run off into waterways around agriculture areas via surface water. Too much nitrogen in the water, when combined with phosphorus, can contribute to nuisance growth of waterweed and algae. This can make water unsuitable for drinking and eventually leads to polluted lakes, rivers and freshwater waterways.
How does nitrates effect our freshwater waterways?
There is major concern about the health of our freshwater rivers and aquifers and the role of intensive agriculture in climate change. Nitrogen can enter waterways as bought-in feed or as nitrogenous fertiliser. Plants take up the nitrogen, but there is more nitrogen in the grass than animals can use, so the excess is returned to the soil as urine, primarily in the ammonium form. Bacteria convert the ammonium nitrogen to nitrate-nitrogen which is highly soluble, this can easily run off into waterways around agriculture areas via surface water. Too much nitrogen in the water, when combined with phosphorus, can contribute to nuisance growth of waterweed and algae. This can make water unsuitable for drinking and eventually leads to polluted lakes, rivers and freshwater waterways.
Accurate and reliable nitrate sensors create live data
New IoT technology, combined with low-energy connectivity and improved sensors has made remote continuous monitoring possible for waterways. It is an easy process to install new nitrate sensors in any body of water on an agricultural property, this includes ponds, lakes, streams and rivers.
The sensors immediately start reporting data to the Adroit Platform to give you continuous monitoring of nitrates in the waterways. You can monitor the effects of heavy rain, fertiliser phasing and stock levels. The challenge is using data to adapt and improve farming and business processes to reduce environmental impact, without reducing productivity. Rich data will play a key role in future decision making to improve waterway quality.
Nitrogen cycle
In order to grow, plants absorb naturally occurring nitrogen and nitrogen from fertilisation. Excessive application of mineral fertilisers and animal manure for farming disturbs this cycle. This results in water pollution and eutrophication (excess growth of weeds and algae that suffocates life in rivers and seas).
Adroit nitrate solutions are used for:
Lakes
Streams
Ponds
Rivers
Catchments
Our most popular water monitoring kits
ADROIT UV NITRATE WATER MONITORING KIT
ADROIT PH/ORP, TURBIDITY SONDE WATER MONITORING KIT
For more information about Adroit nitrate monitoring solutions contact us now.
Latest blog posts
Adroit Smart Post for Easier Environmental Monitoring
New Innovative Modular Adroit Smart Post for Easy Monitoring InstallationsThere’s more to a mounting post than meets the eye and the new Smart Post developed by the team at Adroit is an elegant solution to common installation problems. Adroit installations for noise,...
Introducing EIDO: A Breakthrough in Organic Parameter Measurement
Adroit is excited to announce the latest addition to its arsenal of cutting-edge environmental sensors: the EIDO fluorometer from industry leader Proteus Instruments.
Adroits New Sensor Technology Increases Accuracy and Reliability
Adroit is excited to announce additions to its range of industry-leading sensor technology to improve data accuracy, reliability, and efficiency of our real-time environmental monitoring solutions.